
Vol.:(0123456789)

SN Computer Science           (2021) 2:255  
https://doi.org/10.1007/s42979-021-00668-8

SN Computer Science

ORIGINAL RESEARCH

On Addressing the Low Rating Prediction Coverage in Sparse Datasets 
Using Virtual Ratings

Dionisis Margaris1 · Dimitris Spiliotopoulos2 · Gregory Karagiorgos3 · Costas Vassilakis3   · Dionysios Vasilopoulos3

Received: 14 February 2021 / Accepted: 26 April 2021 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Collaborative filtering-based recommendation systems consider users’ likings and interests, articulated as ratings within 
a database to offer personalized recommendations. Unfortunately, many collaborative filtering datasets exhibit the “grey 
sheep” phenomenon, a state where no near neighbours can be found for certain users. This phenomenon is extremely fre-
quent in datasets where users, on average, have rated only a small percentage of the available items, which are termed as 
sparse datasets. This paper addresses the “grey sheep” problem by proposing the virtual ratings concept and introduces an 
algorithm for virtual rating creation on the basis of actual ratings. The novelty behind this concept is that the introduction 
of the virtual ratings effectively reduces the user–item rating matrix sparsity, thus alleviating the aforementioned problem. 
The proposed algorithm, which is termed as CFVR, has been extensively evaluated and the results show that it achieves to 
considerably improve the capability of a collaborative filtering system to formulate tailored recommendations for each user, 
when operating on sparse datasets, while at the same time improves rating prediction quality.

Keywords  Recommender systems · Collaborative filtering · Virtual ratings · Sparse datasets · Pearson correlation 
coefficient · Cosine similarity · Evaluation

Introduction

Collaborative filtering (CF)-based recommendation systems 
consider users’ likings and interests, articulated as ratings 
within a database to offer personalized recommendations. 
CF algorithms are categorized either as user–user (or user-
based) or as item–item (item-based). User–user CF algo-
rithms, which is the area addressed in this paper, initially 
create each user’s U “near neighbourhood”, i.e. a set of users 
whose ratings are similar to U’s ratings. Then, the ratings of 
U’s near neighbours (NNs) are used to create rating predic-
tions for U, and finally, these rating predictions drive the 
recommendation formulation process [1].

However, many CF datasets suffer from the “grey sheep” 
problem, a state where no NNs can be found for certain users. 
The aforementioned issue is more acute in sparse datasets, that 
is datasets where users—on average—have rated only a small 
percentage of the available items [2].

Previous works have addressed the aforementioned prob-
lem, by incorporating the concept of virtual near neighbours 
(VNNs): a VNN is an artificially generated user entity that 
combines the ratings of real users and the enrichment of the 
user rating database with VNNs leverages the CF prediction 
generation process and increasing coverage. VNNs are intro-
duced and used in the CFVNN algorithm [3].

In this paper, we address the aforementioned problem by 
introducing the novel concept of virtual ratings (VRs), as well 
as an associated algorithm that processes actual (existing) 
ratings and generates VRs. Virtual ratings are rating predic-
tions that are added into the user–item rating database. Once 
generated, VRs are used into the rating prediction computa-
tion process, in a fashion similar to that of user-contributed 
ratings. The novelty of the proposed algorithm the exploitation 
of the direct and the indirect neighbourhood of the user, up 
to a radius, for the generation of a comprehensive set of VRs, 
achieving thus a considerable reduction of the rating matrix 
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sparsity. Furthermore, the algorithm introduced in this paper 
acknowledges that VRs are essentially rating predictions, and 
therefore, bear a degree of uncertainty: to this end, the algo-
rithm proposed in this paper computes a weight associated with 
each VR, which reflects the degree of confidence to the value 
of the VR, and this weight is taken into account in the rating 
prediction formulation procedure.

To exemplify the concept of VRs, let us examine the case of 
computing a prediction for rating rU1,i1

 that user U1 would give 
to item i1 , so as to determine whether it is suitable for inclusion 
in a recommendation to U1. In this illustrative example, we 
assume that the recommender system (RS) employs the Pearson 
correlation coefficient (PCC) metric to compute user-to-user 
similarity [1, 2] and the current state of the user rating database 
is as shown in Table 1.

In this setting, U2 is the only NN of U1 (their PCC score is 
positive, because the only item that they have rated in common 
is i2 and each user’s rating for i2 is below the same user’s aver-
age rating), however, U2 has not rated i1, and, therefore, it is not 
possible to formulate a prediction p

(

rU1,i1

)

 for the rating rU1,i1
 . 

And while user U3 has rated i1, rU3,i1
 cannot be used to compute 

p
(

rU1,i1

)

 , because U3 does not belong to U1’s NN set (users U1 
and U3 have relatively opposite ratings on their commonly rated 
items i5 , i6 and i7 , leading to a low similarity value).

The VR algorithm proposed in this paper recognizes that 
the near neighbours of U1 cannot contribute to the prediction 
for the rating rU1,i1

 and triggers a process for computing a rating 
prediction for item i1 for each of U1’s NNs. In our example, U3 
is a NN to U2 (i.e. the only NN of U1), because the only item 
rated in common by U2 and U3 is i4 , and both U2 and U3 have 
rated i4 with a high mark, and U3 has rated i1, hence a rating 
prediction p

(

rU2,i1

)

 for rU2,i1
 can be generated. Once generated, 

p
(

rU2,i1

)

 will be converted to a VR vrU2,i1
 and accommodated 

into the user–item rating matrix, enabling the computation of a 
rating prediction p

(

rU1,i1

)

.
To substantiate the performance of the CFVR algorithm, we 

have performed an extensive experimental validation exploring 
(a) the gains in terms of prediction coverage increase attained 
by the CFVR algorithm and (b) how the CFVR algorithm affects 
the quality of rating predictions. In this experimental valida-
tion, we utilized eight contemporary and widely used datasets 
covering a variety of domains (movies, books, food, music, 
etc.), and we take into account two broadly employed similarity 
metrics for CF systems, namely the Pearson correlation coef-
ficient (PCC) and the cosine similarity (CS) [1, 2]. We also 
comparatively assess the performance of the proposed CFVR 
algorithm to that of the CFVNN algorithm, proposed in [3] as 

well as the CFDR algorithm proposed in [4]; both CFVNN and 
CFDR are state-of-the-art algorithms that also target prediction 
coverage improvement in CF over sparse datasets.

Considering the above, the novel aspects of this work are 
as follows:

•	 we introduce the concept of VRs, i.e. virtual ratings, 
where a virtual rating vrU,i is computed when rating rU,i 
is not present in the user–item rating matrix, but its pres-
ence would enable the formulation of a rating prediction 
on item i for some user V that is a NN of U

•	 we explore how the created VRs can be incorporated into 
the rating prediction formulation process, targeting primar-
ily to increase the prediction coverage of CF-based recom-
mender systems (RSs), while ensuring that prediction accu-
racy is at least maintained at the same levels. The inclusion 
of the VR concept into the CF technique synthesises a novel 
CF-based algorithm, which will be denoted as CFVR.

•	 We present an extensive experimental evaluation of the 
proposed algorithm, demonstrating that the proposed 
algorithm introduces considerable gains in terms of cov-
erage, while in parallel improving rating prediction qual-
ity. The proposed algorithm is also shown to surpass the 
performance of other state-of-the-art algorithms.

The proposed algorithm can be directly used in the imple-
mentation of efficient recommender systems, while it can also 
leverage further research: first, it can be easily fused with fur-
ther algorithms which focus on (a) the improvement of the rat-
ing prediction computation performance, (b) the increase of 
the accuracy of rating prediction or (c) the improvement of 
recommendation quality in CF-based RSs. These algorithms 
include matrix factorization techniques [5], exploitation of 
visual information [6], pruning of old user ratings [7, 8], con-
cept drift detection techniques [9–11], clustering techniques 
[12–14], algorithms utilizing data from social networks (e.g. 
user relationship graphs) [15–17], or algorithms applying 
hybrid filtering [18–21].

The rest of the paper is structured as follows: “Related work” 
overviews related work, while “The proposed algorithm” intro-
duces the CFVR algorithm. “Experimental evaluation” elabo-
rates on the procedure for tuning parameter values used within 
the operation algorithm and the evaluation of the proposed tech-
nique, and reports on the evaluation of the algorithm; in both 
tasks, eight contemporary and widely used CF datasets were 
utilized. Finally, “Conclusions and future work” concludes the 
paper and outlines future work.

Table 1   CF rating database 
example

User/item i1 i2 i3 i4 i5 i6 i7

U1 ? 1 2 5 5 4
U2 2 5
U3 5 5 1 1 2
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Related Work

CF-based systems have attracted substantial research focus 
over the last years, due to their utility in a number of real-
world tasks and applications. However, most of these works 
aim to improve rating prediction accuracy and recommen-
dation quality, while the aspect prediction/recommendation 
coverage has not been equally developed [22, 23].

Vozalis et al. [18] introduce ItemHyCov, a CF-based algo-
rithm that fuses the merits of user-based and item-based CF 
approaches into a hybrid CF approach that applies feature com-
bination, aiming to improve the coverage levels of CF rating 
predictions over sparse datasets. Margaris and Vassilakis [24] 
present the so-called CFnegNNs algorithm, which increases the 
coverage attainable by CF-based algorithms in sparse datasets, 
by considering in the rating prediction computation phase users 
that bear a high degree of dissimilarity to the user for whom 
each prediction is computed.

Pham et al. [14] present a CF recommendation method 
based on clustering. In this approach, neighbourhoods are 
computed on the basis of social network relationships between 
users, rather than rating similarity. In this sense, the algorithm 
proposed in [14] utilizes a clustering technique for complex 
networks to process the social network user graph and thus 
generate user clusters, with the users in each cluster being con-
sidered as near neighbours. Wang et al. [25] utilize user trust 
relationships to leverage traditional CF-based techniques. Trust 
relationships alleviate the issues introduced due to data spar-
sity and cold-start problems, allowing the formation of near 
neighbourhoods even in the absence of an adequate number of 
co-rated items. The work of Zarei and Moosavi [26] introduces 
a CF algorithm based on a social memory and explore the con-
sideration of social ties in the recommendation process, and the 
impact of this addition on rating prediction accuracy and cov-
erage. Margaris et al. [16] propose an algorithm for SN-based 
recommender systems, where the density of the CF-based and 
the SN-based neighbourhoods fluctuate significantly across dif-
ferent users. This algorithm initially computes one prediction 
for the SN neighbourhood and one prediction for the CF-based 
neighbourhood, and then combines the two distinct predictions 
via a weighted sum approach to formulate the final prediction; 
the weight for each partial prediction is determined by taking 
into account the related neighbourhood (CF and SN) sizes. 
While all the aforementioned approaches improve CF cover-
age, this is made possible through the exploitation of supple-
mentary information harvested from complementary sources, 
mainly social networks; however, this information is not always 
available, hence the applicability of these approaches is limited.

Matrix factorization (MF) techniques have emerged as a 
promising approach for the computation of rating predictions. 
The coverage problem is existent in MF-based systems, how-
ever, it exhibits a different manifestation: due to the nature 
of the rating prediction computation method employed in 

MF-based systems, a prediction for the rating rU,i that user U 
would assign to item i is always generated, nevertheless, as 
asserted in [8], predictions for users or items that have a very 
small number of ratings practically degenerate to some constant 
value that is dependent on the dataset, and effectively do not 
constitute personalized predictions [27]. In terms of metrics, 
coverage will be always equal to 100%, however, there is a neg-
ative impact on the rating prediction accuracy. Guan et al. [28] 
tackle this issue through the introduction of a singular value 
decomposition (SVD) model and utilization of active learning 
techniques, where a number of users are selected to be queried 
about a specific item, and their ratings are used to enhance the 
rating matrix and thus avoid the degeneration of predictions and 
improve rating prediction accuracy.

Poirier et al. [29] propose an approach which comple-
ments the user–item rating matrix using virtual ratings that are 
computed through the processing of textual reviews that are 
sourced from the social network. The accommodation of the 
text review-based virtual ratings decreases the sparsity of the 
user–item rating matrix, which has a positive effect on rating 
prediction coverage. An analogous methodology is followed by 
Moshfeghi et al. [30], where the emotions extracted from user 
reviews are used to estimate whether a user will like an item 
or not. The work in [31] presents an approach pertinent to the 
use of numeric ratings that are derived from textual reviews: 
in this approach, textual features are extracted from reviews 
and are used for computing a confidence factor for each textual 
review-based numeric rating, under the rationale that human 
language has an inherent degree of uncertainty. Although these 
approaches succeed to increase rating prediction coverage, they 
can only be applied when textual reviews are available. In con-
trast, the CFVR algorithm proposed in this paper operates using 
only the user–item rating matrix, not requiring any complemen-
tary data, and henceforth it can be applied to any CF dataset.

Recently, Margaris and Vassilakis [3] introduced the con-
cept of artificial user profiles created by merging pairs of (real) 
NN profiles, namely virtual near neighbours (VNNs), and 
proposed an algorithm that incorporates the VNNs concept 
to alleviate the “grey sheep” problem. In the same line, the 
work in [32] exploits the “friend-of-a-friend” concept, where 
a user’s near neighbourhood is transitively expanded, and this 
expansion of the near neighbourhood enables the computa-
tion of more rating predictions, increasing thus coverage. The 
respective algorithm is coined as CFFOAF. Additionally, the 
work in [4] proposes the CFDR algorithm which examines for 
each rating prediction (a) the number of users that have con-
tributed to its computation, and (b) the cumulative similarity of 
these users and the user for which the prediction was computed 
and if both items meet some threshold, the rating prediction is 
considered as “robust” and inserted into the user–item rating 
matrix; in this way, the sparsity of the user–item rating matrix 
is lowered, leading to an increase in coverage. Notably, [4] 
shows that CFDR outperforms the CFFOAF algorithm.
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Another major issue in sparse CF datasets is noise in the 
rating data that distort the accuracy of the CF systems [33–35]. 
Toledo et al. [36] propose an approach that detects and cor-
rects the ratings that are deemed to be inconsistent and might 
introduce recommendation bias, based only on the user–item 
rating matrix and without requiring any complementary data. 
Yera et al. [37] develop a flexible approach to improve recom-
mendation accuracy that uses fuzzy tools to provide a greater 
flexibility in the characterisation of the elements, which man-
ages the uncertainty present in natural noise. Patra et al. [38] 
propose the Bhattacharyya CF Coefficient, which provides reli-
able item recommendations to users, by locating useful NNs 
in sparse CF dataset. Bag et al. [39] propose a method that 
first re-classifies the items and users of a RS into three classes 
(weak, average and strong) to identify and correct noise rating, 
and then predicts the values of the ratings of the unrated items, 
from the sparse and noise-free dataset.

The present work advances the state-of-the-art regarding 
the coverage increase in CF systems, through the reduction of 
the user–item rating matric sparsity by means of injection of 
the virtual ratings. Differently from other works, the injected 
virtual ratings are computed utilizing only the contents of the 
user–item rating matrix, not necessitating any additional data 
and henceforth being applicable to any CF-based system. Fur-
thermore, while works [3, 32] that achieve coverage increase 
based only on the user–item rating matrix operate at user-level, 
the current work operates at individual rating level, being thus 
more versatile and achieving higher rating prediction cover-
age increase. In parallel, the injection of virtual ratings into the 
user–item rating matrix alleviates the “grey sheep” problem that 
all sparse CF datasets suffer from.

The Proposed Algorithm

CF algorithms operate in a two-phase fashion to compute pre-
dictions for the ratings that some user U would enter for items. 
The first phase encompasses the determination of U’s NNs, 
i.e. the users who have rated items in a similar fashion with U. 
Rating similarity is quantified using a similarity metric, such as 
PCC or CS [1, 2]. Typically, only users whose similarity to U 
meets or exceeds a certain threshold are considered to be NNs 
for U. The set of U’s NNs is denoted as NNU.

The PCC is a commonly used metric for quantifying 
user-to-user similarity; under the PCC, the similarity 
between two users U and V is computed using formula (1):

where k iterates over the items that are rated by both U and 
V, while rU  (resp. rV  ) is the mean values of ratings entered 
in the database by U (resp. V).

(1)simPCC(U,V) =

∑

k

�

rU,k − rU
�

∗
�

rV ,k − rV
�

�

∑

k

�

rU,k − ru
�2

∗
∑

k

�

rV ,k − rV
�2

,

CS [1, 2] is an alternative metric for quantifying user-
to-user similarity and is expressed as:

The second phase consists of the computation of rat-
ing predictions, which are personally tailored for U. To 
compute a prediction pU,i that U would enter for item i, 
formula (3) is employed:

The novelty behind the proposed algorithm is the introduc-
tion of the virtual ratings (VRs), which are computed and used 
within the process of computing a rating prediction pU,i as fol-
lows: if no user V ∈ NNU has rated item i, and, therefore, a rating 
prediction for user U cannot be computed according to formula 
(3), then the procedure to generate virtual ratings vrV,i for each 
user V ∈ NNU is triggered. According to this procedure, for each 
user V ∈ NNU a rating prediction pV,i is calculated, based on the 
near neighbourhood of V. If, for at least one user V ∈ NNU, a 
rating prediction pV,i was successfully calculated (i.e. the near 
neighbourhood of V included at least one NN W that had rated 
item i), then the VR calculation phase terminates, the calculated 
rating predictions are added to the user–item rating matrix as 
virtual ratings of the respective users and used in the process of 
the computation of rating prediction pU,i for user U. It is possi-
ble, however, that no user V ∈ NNU had a NN W ∈ NNV who had 
rated item i; in this case, the virtual rating calculation process 
is expanded recursively to all the near neighbourhoods of the 
members of NNU, until either a virtual rating is computed, or 
no further users can be considered.

To exemplify the VR computation process, let us consider 
the CF NN network depicted in Fig. 1. In the context of this 
network, we need to compute a rating prediction pU,i , however, 
none of the U’s NNs has rated item i; only users W2, W3, X2, X3, 
Y1 and Y2 have rated item i.

Hence, the VR computation procedure is triggered as 
follows:

•	 Initially, V1 is considered; V1 has only one NN, W1 (U obvi-
ously cannot serve as a recommender to V1 for item i, since 
U is asking V1 for a recommendation, and is, therefore, 
excluded). However, W1 has not rated item i and has no 
near neighbours (other than V1) to ask for a recommenda-
tion. Therefore, no VR is computed for V1 regarding item i.

•	 Subsequently, V2 is considered. V2 has two direct NNs 
that have rated item i (W2 and W3), and therefore, vrV2,i

 
can be computed, by applying formula (3). User W6 is 
also a NN of V2, however, W6 has not rated item i and 
hence does not contribute to the computation of vrV2,i

.

(2)simCS(U,V) =

∑

k rU,k ∗ rV ,k
�

∑

k

�

rU,k

�2
∗

�

∑

k

�

rV ,k
�2

.

(3)pU,i = ru +

∑

V∈NNu
sim(U,V) ∗

�

rV ,i − rV
�

∑

V∈NNu
sim(U,V)

.
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•	 Finally, V3 is considered. V3 has two NNs (other than 
U), namely W4 and W5, none of which has rated item i, 
and consequently vrV3,i

 cannot be computed at this stage. 
However, users W4 and W5 have in turn near neighbours, 
and, therefore, the computation of vrW4,i

 and vrW5,i
 can be 

attempted on the basis of each user’s NN. If at least one 
of these attempts is successful, then vrV3,i

 can be subse-
quently computed since the near neighbourhood of user 
V3 would then include a user having a (virtual) rating for 
item i. Indeed, vrW4,i

 can be computed on the basis of the 
ratings of users X2 and X3, and vrW5,i

 can be computed 
based on the rating entered by user X3; these VRs will 
then be combined using formula (3) to produce vrV3,i

 . 
When computing vrW4,i

 users {V3, U} would be excluded 
from any consideration, since vrW4,i

 is being computed 
with the purpose of providing a rating prediction to them 
for item i (directly for V3 and indirectly for U), and hence 
these users are not appropriate for providing a prediction 
back to W4 in this process; similarly, users {V3, U} are 
excluded from consideration when computing vrW5,i

.
•	 Notably, the ratings entered by users Y1 and Y2 are not 

used in this process. The rating entered by user Y1 is 
not used because user W4 has direct NNs (reachable at 
a neighbourhood radius equal to 1) that have rated item 
i, and hence it is not necessary to consider indirect NNs 
(reachable at a neighbourhood radius greater than 1) for 
the computation of vrW4,i

 ; and the rating entered by Y2 is 
not used, because Y2 is not connected in U’s CF neigh-
bourhood, neither as a direct nor as an indirect NN.

Listing 1 presents the algorithm used to compute VRs. The 
code needed for excluding the user whose neighbourhood is 
being populated with VRs (directly or indirectly, as exemplified 
above) is omitted for clarity.

Since virtual ratings are effectively rating predictions, their 
values bear a degree of uncertainty. To accommodate this aspect 
in the rating prediction calculation process, a weight parameter 
is considered for each rating according to formula (4):

where function f may take into account any property of VR r, 
and notably (1) the number of recursive steps taken to locate 
near neighbours that are able to contribute to the computa-
tion of r, which is denoted as radius(r), (2) the similarity of 
user V to his NNs that contribute their (virtual) ratings for 
the formulation of vrV,i and (3) the weights of the (virtual) 
ratings that contribute to the computation of vrV,i. The range 
of f(r) is [0, 1]. In regard to the consideration of the radius(r) 
attribute, taking into account that a larger number of steps 
indicates a higher degree of uncertainty for the value of vrV ,i , 
f will be a decreasing function with respect to radius(r).

Considering the introduction of rate weights, formula (3) is 
modified as shown in formula (5):

where rV,i may be either a real rating (if one is available) or 
a virtual rating, computed according to the algorithm pre-
sented in Listing 1.

For the application of this algorithm, the following param-
eters need to be determined:

1.	 The number of recursive steps the VR computation algo-
rithm needs to take in order to reach a satisfactory CF 
coverage level while maintaining efficiency in computing 
VRs; effectively, this number imposes a limit to the radius 
to which the near neighbourhood search will extend to 
when computing VRs, and will be denoted as RadNN and

2.	 The optimal formulation for the f(radius) function com-
puting wrat in formula (4), i.e. the weights for the VRs 
taking part in the prediction formulation ( wrat for real 
ratings will be set to 1.0).

In “Experimental evaluation”, we investigate different set-
tings regarding the number of VR steps, as well as the values of 
the wrat parameter, aiming to determine the optimal settings for 
the parameters of the proposed algorithm and finally evaluate 
the algorithm considering the dimensions of rating prediction 
coverage and accuracy.

Experimental Evaluation

In this section, we report on our experiments aiming to:

1.	 Determine the optimal values for the parameters 
required by the CFVR algorithm; these parameters are 
(a) the RadNN limit and (b) the optimal weight set to 

(4)wrat(r) =

{

1, if r is an explicitly entered rating

f (r) if r = vrV ,i is a virtual rating
,

(5)

pU,i = ru +

∑

V∈NNU
sim(U,V) ∗ wrat

�

rV ,i
�

∗
�

rV ,i − rV
�

∑

V∈NNU
sim(U,V) ∗ wrat

�

rV ,i
� ,

Fig. 1   A sample CF NN network
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each virtual rating, based on the number of recursive 
steps that were taken to during its computation (i.e. the 
radius of the neighbourhood that was explored in the 
computation of the specific rating), and

2.	 Evaluate the CFVR algorithm performance regarding the 
aspects of (a) coverage and (b) rating prediction accu-
racy. The CFVR algorithm is comparatively evaluated 
to (1) the plain CF algorithm, which constitutes the 
baseline and (2) the CFVNN algorithm [3] and the CFDR 
algorithm [4].
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The CFVNN algorithm [3] and the CFDR algorithm 
[4] are recently published state-of-the-art algorithms 
(2019 and 2020, respectively) which also (a) target to the 
increase of CF prediction coverage, (b) utilize only the rat-
ings database, requiring no additional data such as textual 
user reviews or user-to-user relationships retrieved from 
social networks and (c) attain substantial improvements 
regarding coverage while improving—to a small extent—
rating prediction accuracy [3, 4].

For the quantification and comparison of rating prediction 
accuracy, two widely used metrics have been employed, namely 
the mean absolute error (MAE) and the root mean squared error 
(RMSE) [1, 2]. Obtaining and analysing both metrics provide 
more comprehensive insight on the rating prediction accuracy 
achieved by each parameter setting, as the MAE metric penal-
izes both small and large errors at a uniform scale, whereas 
the RMSE metric punishes errors of greater magnitude more 
strictly.

To compute the MAE and RMSE metrics, we applied the 
widely used “hide one” method [1, 2]: iteratively, one item in 
the database was concealed and then a prediction for this rat-
ing was computed on the basis of the non-hidden ratings. This 
process was performed for all ratings in the database. We also 
conducted a second experiment where, for each user, only her 
most recent rating was concealed, and the value of the hidden 
rating was predicted on basis of the non-hidden ratings. The 
comparison between the results of the two experiments showed 
that the magnitude of the differences for both the MAE and the 
RMSE metric were less than 2.8% in all cases, and henceforth 
we present only the results of the first experiment for brevity. 
Prediction coverage was calculated as the ratio of the users for 
whom personalized predictions could be computed to the total 
number of users.

All experiments were run on eight datasets. Seven of these 
datasets have been sourced from Amazon [40, 41], while the 
eighth dataset has been retrieved from MovieLens [42, 43]. 
These are the exact same datasets the CFVNN algorithm was 
tested in [3], however, in this paper, we utilized the respective 

5-core counterpart datasets (n.b.: in a 5-core dataset, each user 
and item included in the dataset has at least 5 reviews). Within 
the paper introducing the CFVNN algorithm [3], experiments 
were executed against the initial datasets, after dropping users 
having less than 10 ratings each. However, the 5-core dataset 
was deemed more appropriate, since in a considerable number 
of cases (ranging from 5 to 15% in the Amazon-sourced data-
sets) only a single rating existed in the dataset for the respective 
item, hence when this rating was concealed, rating prediction 
computation for the specific item was not possible.

The eight datasets utilized in our experimental evaluation 
are presented in Table 2. They exhibit the following properties:

1.	 They are broadly used for experimentation and bench-
marking in CF research,

2.	 They are up to date (published between 1996 and 2016) 
and

3.	 They cover a wide range of item domains (e.g. office 
supplies, food, movies and music), while their size var-
ies from 1.4 to 216 MB in plain text format.

The statistics about the number of users, number of items 
and number of ratings relate to the size of the dataset; these are 
included to demonstrate the applicability of the algorithm to 
datasets of different sizes. The density statistic denotes percent-
age of entries in the user-rating matrix that are non-empty, i.e. 
the percentage of (user, item) pairs where the user has entered 
a rating for the item. Density is directly correlated to sparsity, 
since sparsity = 1 − density, and the low rating prediction cover-
age targeted by the proposed algorithm is mainly exhibited in 
low density datasets. Finally, the average #ratings/user statistic 
is given since it has been shown to affect the performance of 
CF algorithms when sparsity-related effects are considered [24, 
44]. The proposed algorithm does not necessitate or utilize any 
additional dataset features, aiming to be applicable to all CF 
datasets, hence the statistics shown in Table 2 are confined to 
the ones pertinent to the algorithm, as discussed above.

Table 2   Dataset summary

Dataset name #Users #Items #Ratings Avg. #ratings/
user

Density (%) DB size (in 
text format) 
(MB)

Amazon “Videogames” [40] 24 K 11 K 232 K 9.7 0.089 5
Amazon “CDs and Vinyl” [40] 75 K 64 K 1.1 M 14.7 0.023 25
Amazon “Movies and TV” [40] 124 K 50 K 1.7 M 13.7 0.027 40
Amazon “Books” [40] 604 K 368 K 8.9 M 14.7 0.004 216
Amazon “Digital Music” [40] 5.5 K 3.5 K 65 K 11.8 0.327 1.4
Amazon “Office Supplies” [40] 5 K 2.5 K 53 K 10.6 0.448 1.1
Amazon “Grocery and Gourmet Food” [40] 15 K 9 K 151 K 10.1 0.118 3.4
MovieLens “Latest 100 K—recommended for 

education and development” [42]
670 9 K 100 K 166 1.85 2.2
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Finally, we compare the CFVR algorithm with the algorithm 
presented in [39], in terms of rating prediction accuracy. The 
algorithm presented in [39], is also a recently published (2019) 
state-of-the-art algorithm that targets rating prediction accuracy 
increase, by handling noise in the rating data that distort the CF 
systems’ accuracy, a problem extremely frequent to sparse CF 
dataset and has found to be more efficient than other algorithms 
of the same category.

For our experiments, we used a laptop with the following 
characteristics: an Intel N5000 CPU operating at a frequency of 
1.1 GHz; 8 GB of DDR3 RAM; and a 256 GB solid-state drive 
with a transfer rate equal to 560MBps. This laptop both stored 
the eight datasets and executed the rating prediction algorithms. 
The process for conducting all experiments was as follows:

1.	 Initially, the relevant dataset was loaded from the text-
formatted file into dynamic hash indexes. Using hash 
structures for indexing data within the main memory 
provided low lookup times.

2.	 The similarities between users were computed and the 
NNs for each user were discerned.

3.	 The computeVirtualRating algorithm shown in Listing 
1 was employed to compute VR ratings.

4.	 After the computation of VRs concluded, the computed 
VRs were injected into the hash structures already 
hosting the user–item rating database contents. Subse-
quently, the similarities between users were recomputed.

5.	 Finally, rating predictions were computed by applying 
the “hide one” method described above, and the cover-
age and error metrics were computed.

Coverage Increase

The first experiment is aimed at determining the number of 
recursive steps that the VR computation algorithm should 
take to reach a satisfactory increase in coverage (close to 
that obtained by applying an exhaustive search of each user’s 
direct and indirect near neighbourhoods), while addition-
ally maintaining computational efficiency. More specifi-
cally, we have implemented an exhaustive search algorithm 
(Floyd–Warshall [45]) to find the maximum increase in 
coverage that can be obtained through the application of 
the CFVR algorithm. This maximum is reached when the 
algorithm in Listing 1 is permitted to search the complete 
direct and indirect near neighbourhood of each user U to 
compute VRs, which will then be exploited to formulate 
recommendations to U. To promote efficiency, however, it 
is possible to confine the search to a subset of each user’s 
(direct and indirect) near neighbourhood; in this paper, we 
use the neighbourhood radius as a criterion for confining the 
search. For each dataset, we started with a NN radius equal 
to one, and extended the radius until the coverage obtained 
reached or exceeded the 99% of the maximum coverage 

that could be obtained by the CFVR algorithm (i.e. when 
the VR computation algorithm searched the complete direct 
and indirect near neighbourhood of each user). The results 
obtained for each dataset in the context of this experiment 
are reported in the following paragraphs:

The Amazon “Videogames” Dataset

Figure 2 illustrates the rating prediction coverage increase 
achieved by the CFVR algorithm, for both similarity met-
rics, using the performance of the plain CF algorithm as a 
yardstick, for the Amazon “Videogames” dataset. In both 
cases, we can observe that the maximum coverage increase 
achieved by the CFVR algorithm (exhaustive search) is 
39.49% under the PCC similarity metric and 23.22% under 
the CS metric. When the RadNN is set to 1 (i.e. only the 
direct near neighbours are considered for VR computation), 
the coverage increase achieved by the CFVR algorithm is 
equal to the 81.2% of the maximum under the PCC similar-
ity metric and 74.1% of the maximum under the CS similar-
ity metric. When RadNN increases to 2, the coverage increase 
is very close to the maximum under both similarity metrics 
(99.87% for the PCC and 99.91% for the CS). Clearly, setting 
RadNN to 2 achieves a near-to-maximum coverage increase, 
while at the same time removing the need to exhaustively 
search the (indirect) near neighbourhood, considerably 
improving, therefore, the performance of the algorithm.

In Fig. 2, we can also observe that the CFVR algorithm 
with RadNN = 2, surpasses the performance of the CFVNN 
algorithm by 9.90% under the PCC similarity metric and 
by 6.00% under the CS similarity metric. This is due to the 
fact that the CFVNN algorithm presented in [3] decreases 

29.54%

32.07%

39.44%

39.49%

0% 10% 20% 30% 40% 50%

exhaustive

coverage increase PCC

CFVR (RadNN=2)

CFVR (RadNN=1)

CFVNN

17.20%

17.20%

23.20%

23.22%

0% 5% 10% 15% 20% 25%

exhaustive

coverage increase CS

CFVR (RadNN=2)

CFVNN

CFVR (RadNN=1)

Fig. 2   Coverage increase for both similarity metrics for the Amazon 
“Videogames” Dataset
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the sparsity of the user–item rating matrix at a granularity 
of users (through the introduction of virtual users), how-
ever, in some cases, these VNNs bear a negative correla-
tion with “real” users and cannot, therefore, contribute to 
the formulation of predictions for these users, as shown 
in the example presented in the introduction section. In 
contrast, the CFVR algorithm reduces the user–item rat-
ing matrix sparsity at a granularity of individual ratings 
(insertion of VRs), which are always usable for prediction 
formulation.

The Amazon “CDs and Vinyl” Dataset

Figure  3 illustrates the rating prediction coverage 
increase achieved by the CFVR algorithm, for both simi-
larity metrics, again using the performance of the plain 
CF algorithm as a yardstick, for the Amazon “CDs and 
Vinyl” dataset. For the PCC metric, the maximum cover-
age increase attained by the CFVR algorithm is 36.41% 
(exhaustive setting); when RadNN is set to 1, the coverage 
increase achieved is 81.5% of this maximum, while a fur-
ther increase of RadNN to 2 raises the coverage increase 
to the 99.91% of the maximum. Similarly, under the CS 
similarity metric, setting RadNN = 1 delivers a coverage 
increase equal to the 86.94% of the maximum (which is 
23.12%), whereas setting RadNN = 2 enlarges the achieved 
coverage increase to the 99.83% of the maximum. Evi-
dently, the setting RadNN = 2 warrants sufficient coverage 
increase in this dataset too, while reducing the compu-
tational cost by pruning the users’ NN search in the VR 
computation phase.

In Fig. 3, we can also notice that the CFVR algorithm 
under the setting RadNN = 2 exceeds the performance of 
the CFVNN algorithm by 8.98% under the PCC similarity 
metric and by 2.98% under the CS similarity metric.

The Amazon “Movies and TV” Dataset

Figure 4 illustrates the rating prediction coverage increase 
achieved by the CFVR algorithm, for both similarity metrics, 
again using the performance of the plain CF algorithm as a 
yardstick, for the Amazon “Movies and TV” dataset. In both 
cases, we can notice that using a setting of RadNN = 2 suf-
fices to achieve a coverage increment practically identical to 
the one delivered when an exhaustive neighbourhood search 
is employed. The coverage increments reaped in this dataset 
are smaller than those observed in the cases of the previous 
two datasets: this is owing to the fact that the coverage of 
the plain CF algorithm was already relatively high (77% for 
the PCC metric and 91.2% for the CS metric), hence the 
improvement margins were limited.

In Fig. 4, we can observe that the CFVR algorithm with 
RadNN = 2 outperforms CFVNN algorithm by 4.82% under the 
PCC similarity metric and by 1.20% under the CS similarity 
metric.

The Amazon “Books” Dataset

Figure 5 illustrates the rating prediction coverage increase 
achieved by the CFVR algorithm, for both PCC and CS 
similarity metrics, using the performance of the plain 
CF algorithm as a yardstick, for the Amazon “Books” 
dataset. In both cases, we can observe that when RadNN 
is set to 2, the coverage increases achieved by the CFVR 
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Fig. 3   Coverage increase for both similarity metrics for the Amazon 
“CDs and Vinyl” dataset
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Fig. 4   Coverage increase for both similarity metrics for the Amazon 
“Movies and TV” dataset
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algorithm is very close to the maximum ones obtained 
under an exhaustive NN search (99.81% of maximum 
coverage increase under the PCC similarity metric, and 
99.96% under the CS similarity metric). The high cover-
age increases observed in this dataset are owing to the 
low density of the dataset (0.004%), which confined the 
coverage of the plain CF algorithm to 52% under the PCC 
similarity metric, introducing thus a wide improvement 
margin.

In Fig. 5, we can observe that the CFVR algorithm with 
RadNN = 2 outperforms CFVNN algorithm by 13.50% under 
the PCC similarity metric and by 3.09% under the CS sim-
ilarity metric.

The Amazon “Digital Music” Dataset

Figure 6 illustrates the rating prediction coverage increase 
achieved by the CFVR algorithm, for both PCC and CS 
similarity metrics, again using the performance of the 
plain CF algorithm as a yardstick, for the Amazon “Digital 
Music” dataset. In both cases, we can clearly see that setting 
RadNN = 2 is sufficient to achieve a coverage increase of at 
least 99.83% of the coverage increase obtained when using 
an exhaustive NN search in the VR computation phase.

The coverage of the plain CF algorithm in this dataset was 
initially relatively high (e.g., under the CS similarity metric 
the plain CF algorithm exhibited a coverage of 92.9%), owing 
to the increased density of the dataset, hence the improvement 
margin was low; yet again, the CFVR algorithm still managed 
to further extend the achieved coverage.

In Fig. 6, we can observe that the CFVR algorithm with 
RadNN = 2 outperforms CFVNN algorithm by 4.76% under the 
PCC similarity metric and by 0.23% under the CS similarity 
metric.

The Amazon “Office Supplies” Dataset

Figure 7 illustrates the rating prediction coverage increase 
achieved by the CFVR algorithm, for both PCC and CS 
similarity metrics, using the performance of the plain CF 
algorithm as a yardstick, for the Amazon “Office Supplies” 
dataset. In both cases, we can observe that when RadNN is 
set to 2, the coverage increases achieved by the CFVR algo-
rithm is very close to the maximum ones obtained under 
an exhaustive NN search (99.93% of maximum coverage 
increase under the PCC similarity metric, and 99.79% under 
the CS similarity metric).
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Fig. 5   Coverage increase for both similarity metrics for the Amazon 
“Books” dataset
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In Fig. 7, we can observe that the CFVR algorithm with 
RadNN = 2 outperforms CFVNN algorithm by 4.62% under the 
PCC similarity metric and by 0.64% under the CS similarity 
metric.

The Amazon “Grocery and Gourmet Food” Dataset

Figure 8 illustrates the rating prediction coverage increase 
achieved by the CFVR algorithm, for both PCC and CS 
similarity metrics, again using the performance of the plain 
CF algorithm as a yardstick, for the Amazon “Grocery and 
Gourmet Food” dataset. In both cases, we can clearly see 
that setting RadNN = 2 is sufficient to achieve a coverage 
increase of at least 99.98% of the coverage increase obtained 
when using an exhaustive NN search in the VR computation 
phase.

It has to be noted that, under both similarity metrics, the 
initial plain CF coverage was relatively low (44.6% and 63.1% 
for the PCC and the CS, respectively). As can be seen in Fig. 8, 
by setting RadNN = 2, the coverage was found to increase by 
80.51% and 58.46%, for the PCC and the CS similarity metrics, 
respectively, reaching 80.5% and 99.99% in absolute numbers, 
correspondingly.

In Fig. 8, we can observe that the CFVR algorithm with 
RadNN = 2 outperforms CFVNN algorithm by 13.51% under the 
PCC similarity metric and by 3.06% under the CS similarity 
metric.

The MovieLens “Latest 100 K: Recommended for Education 
and Development” Dataset

Figure 9 illustrates the rating prediction coverage increase 
achieved by the CFVR algorithm, for both PCC and CS 

similarity metrics, again using the performance of the plain 
CF algorithm as a yardstick, for the MovieLens “Latest 100 
K: Recommended for education and development” dataset. 
Since this dataset has very high density (avg. #Ratings-to-
Users ratio = 166, more than 10 times higher than the respec-
tive ones of the Amazon datasets), the coverage achieved 
by the plain CF algorithm is very high (over 94% under 
both similarity metrics), and consequently the improvement 
margin is considerably limited. Nevertheless, the CFVR algo-
rithm still delivers a coverage increment, indicating that the 
proposed algorithm can offer coverage gains even in datasets 
where the initial coverage is already high.

In both cases, we can see that setting RadNN = 2 suffices to 
obtain a coverage increase practically identical to that of the one 
achieved using an exhaustive near neighbourhood search in the 
VR computation phase.

In Fig. 9, we can observe that the CFVR algorithm with 
RadNN = 2 outperforms CFVNN algorithm by 1.18% under the 
PCC similarity metric and by 0.82% under the CS similarity 
metric.

Determining the Optimal Weights for the Virtual 
Predictions

After having established (a) the capability of the proposed 
algorithm to offer coverage increments in every dataset 
tested, regardless of its density and the coverage delivered by 
the plain CF algorithm and (b) that the setting of RadNN = 2 
suffices to achieve a coverage increase practically identical 
to the maximum increase that can be obtained by the CFVR 
algorithm (i.e. the one obtained under an exhaustive near 
neighbourhood search in the VR computation phase), we 
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Fig. 8   Coverage increase for both similarity metrics for the Amazon 
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conducted a second experiment aiming at determining the 
optimal setting for the wrat computation function f (c.f. Eq. 4).

	   The multiplicative contributor similarity simmul(V, 
W) between a user V and a contributor of an explicitly 
entered rating W is computed as follows:

where sim denotes the currently employed user simi-
larity metric (PCC or CS, c.f. Eqs. (1) and (2), respec-
tively). Effectively, the similarity between a user and her 
direct neighbours is expressed by the currently employed 
user similarity metric, while for contributors W not 
within the near neighbourhood of user V, the shortest 
path between V and W within the near neighbourhood 
graph is determined, and the similarity between V and 
W is set to the product of the weights of the edges along 
this path (edge weights correspond to the similarity of 
the users connected by the edge). Note that since RadNN 
= 2, the maximum length of such a path will be equal 
to 2.

3.	 Average of maximal contributor similarities (Avg-Max-
Contr) Similar to the case (2), above, with the difference 
that for contributors W not within the near neighbour-
hood of user V, the similarity between V and W is set 
to the maximum of the weights of the edges along the 
shortest path between V and W. Formally, the similarity 
simmax(V, W) between a user V and a contributor of an 
explicitly entered rating W is expressed as

4.	 Average of minimal contributor similarities (Avg-Min-
Contr) Similar to the case (2), above, with the difference 
that for contributors W not within the near neighbour-
hood of user V, the similarity between V and W is set 
to the minimum of the weights of the edges along the 
shortest path between V and W. Formally, the similarity 
simmin(V, W) between a user V and a contributor of an 
explicitly entered rating W is expressed as

5.	 Average of mean contributor similarities (Avg-Mean-
Contr) Similar to the case (2), above, with the differ-
ence that for contributors W not within the near neigh-
bourhood of user V, the similarity between V and W is 

(6)f
(

vrV ,i
)

= avg
(

simmul(V ,W)
)

W∈contributors(vrV ,i)

.

(7)simmul(V ,W) =

{

sim(V ,W) if W ∈ NN(V)

sim(V ,X) ∗ sim(X,W) if W ∉ NN(V) ∧ X ∈ NN(V) ∧W ∈ NN(X)
,

(8)simmax(V ,W) =

{

sim(V ,W) ifW ∈ NN(V)

max(sim(V ,X), sim(X,W)) ifW ∉ NN(V) ∧ X ∈ NN(V) ∧W ∈ NN(X)
.

(9)simmin(V ,W) =

{

sim(V ,W) ifW ∈ NN(V)

min(sim(V ,X), sim(X,W)) ifW ∉ NN(V) ∧ X ∈ NN(V) ∧W ∈ NN(X)
.

More specifically, for each setting of the wrat computa-
tion function f, the rating prediction accuracy achieved by the 
particular setting was measured in terms of the MAE and the 
RMSE metrics, as described at the beginning of the “Experi-
mental evaluation” section. In this experiment, we have set 
RadNN = 2. While in the experiment, we tested and analysed 
more than 20 weight value combinations, in the rest of this 
subsection we report only on the most indicative ones, for con-
ciseness purposes.

Figure 10 illustrates the rating prediction error reduction 
achieved under the following settings of function f:

1.	 Equivalence to explicitly entered ratings (Eq-Expl) 
Virtual ratings are treated equally to explicitly entered 
ratings, by setting their weight to 1.0. Formally, 
f(vrV,i) = 1.0.

2.	 Average of multiplicative contributor similarities (Avg-
Mul-Contr) The weight of a virtual rating vrV,i is com-
puted as the average of the multiplicative similarities 
between user V and each of the users that have contrib-

uted an explicitly entered rating to the computation of 
vrV,I, i.e.
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set to the mean of the weights of the edges along the 
shortest path between V and W. Formally, the similarity 
simmean(V, W) between a user V and a contributor of an 
explicitly entered rating W is expressed as

6.	 Average of direct neighbour similarities (Avg-Direct-
NN) The weight of a virtual rating vrV,i is set to the aver-
age of the similarities of user V to her direct neighbours 
involved in the computation of vrV,i. A direct neighbour 
W of V is considered to be involved in the computa-
tion of vrV,i if either (a) W has contributed an explicitly 
entered rating to the computation of vrV,i or (b) user X is 
a near neighbour of W and X has contributed an explic-
itly entered rating to the computation of vrV,i. The set of 
all direct neighbours of V that are involved in the com-
putation of vrV,i will be denoted as IDN(vrV,i). Formally, 
the weight f(vrV,i) is computed as:

7.	 Radius-dependent, low weight (Radius-Low) The weight 
of a virtual rating is solely dependent on the radius of 
the neighbourhood explored to locate explicitly entered 
rating contributors as follows:

	   Larger values of radius (vr) are not considered, since 
in this experiment, we have set RadNN = 2.

(10)simmean(V ,W) =

{

sim(V ,W) if W ∈ NN(V)
sim(V ,X)+sim(X,W)

2
if W ∉ NN(V) ∧ X ∈ NN(V) ∧W ∈ NN(X)

.

(11)f
(

vrV ,i
)

= avg
W∈IDN(vrV ,i)

(sim(V ,W)).

(12)f (vr) =

{

0.5 if radius(vr) = 1

0.25 if radius(vr) = 2
.

8.	 Radius-Dependent, High Weight (Radius-High) Similar 
to case 6, above, however, the values assigned to f(vr) 
are higher:

Recall that in all cases, the weight of real ratings is 
always equal to 1.0 (c.f. Eq. 4).

Figure 10 depicts the average prediction errors reductions 
across all datasets, under both MAE and RMSE quantifica-
tion metrics and when employing the PCC similarity met-
ric, for the settings of function f listed above. In Fig. 10, 
we can observe that the setting for function f that delivers 
the highest prediction errors reductions, is the one denoted 
as Radius-High, i.e. the setting where the weight of a VR 
depends only on the radius of the neighbourhood exploited 
for its computation and assigning a weight equal to 0.75 to 
VRs that have been computed on the basis of the direct near 
neighbourhood (radius(vr) = 1) and a weight equal to 0.5 to 
VRs that have been computed on the basis of a near neigh-
bourhood of a radius equal to 2. Under the aforementioned 

(13)f (vr) =

{

0.75 if radius(vr) = 1

0.5 if radius(vr) = 2
.
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Fig. 10   Prediction error reduction under different VR weight param-
eter computation settings, using the PCC similarity metric

settings, an average MAE reduction of 2.26% and an average 
RMSE reduction of 2.95% are harvested. Notably, the results 
were relatively consistent across all datasets, in the sense that 
the ranking of the tested settings of the f function was almost 
the same for all the datasets tested. The results obtained for 
each individual dataset, concerning the optimal setting iden-
tified in this experiment, are shown and discussed in more 
detail in the next subsection, where the proposed algorithm 
is compared with the CFVNN algorithm presented in [3] and 
the CFDR algorithm presented in [4]. The runner-up is the 
one denoted as radius-low, i.e. the counterpart of Radius-
High that assigns lower weights to VRs [equal to 0.5 and 
0.25 when radius(vr) = 1 and radius(vr) = 2, respectively]. 
Considering the other settings, the mean and multiplicative 
contributor averages (Avg-Mean-Contr and Avg-Mul-Contr) 
are ranked in the third and fourth place, respectively.

When the CS similarity metric is employed, the same set-
ting of function f Radius-High has been again found to achieve 
the highest improvements regarding rating prediction accuracy, 
for both the MAE and the RMSE metrics. Using this setup, 
the error metric reductions are 2.95% for the MAE metric and 
2.09%. Again, Radius-High is followed by Radius-Low, Avg-
Mean-Contr and Avg-Mul-Contr, in that order.
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Execution Time Analysis

In this section, we analyze the execution time of the pro-
posed algorithm, focusing on the overhead introduced due 
to the execution of two additional computation steps in com-
parison to the plain CF algorithm, namely (a) the computa-
tion of virtual ratings and (b) the re-computation of user 
similarities, considering the VR-enhanced user–item rating 
matrix.

The overall overhead from steps (a) and (b) listed above ranges 
from 5 to 40%, depending on the dataset and the similarity metric 
used. The smallest overheads were observed for the “Amazon 
videogames” and “Amazon grocery” datasets, and the largest one 
for the Movielens “Latest 100 K: Recommended for education 
and development” dataset; in general, the overhead was found to 
increase along with the statistical measure “Avg. #ratings/user” 
of the dataset. This is attributed to the fact that more real ratings 
lead to greater numbers of NNs, hence neighbourhood search 
for the computation of VRs requires more time. Furthermore, 
greater numbers of real ratings and NNs implies the computa-
tion of greater numbers of VRs, and this in turn increases the 
time needed for the re-computation of user-to-user similarities, 
since the re-computation of these similarities operates on more 
extensive data (the union of the real and virtual ratings).

two users to be considered in the similarity computation of 
step (b) above are (I(U) ∪ IV(U)) ∩ (I(V) ∪ IV(U)). This set can 
be subdivided to two disjoint subsets:

•	 The items for which both users have entered a real rating, 
which are given by the expression CR(U, V) = I(U) ∩ I(V) 
and

•	 The items where at least one of the ratings is a virtual 
one, which are given by the expression CV(U, V) = ((I(
U) ∪ IV(U)) ∩ (I(V) ∪ IV(U)) − (I(U) ∩ I(V)))

Considering these subsets, Eq. (2) can be rewritten as:

However, the first term of the sum in the nominator, as well 
as the first term in each of the terms in the denominator cor-
respond to the respective quantities used for the computation 
of the original similarity between U and V, during the prepara-
tory step for the computation of virtual ratings. Hence, these 
partial results can be cached from that phase and reused for the 
computation of user similarity considering the VR-enhanced 
user–item rating matrix, reducing the time needed for this step 
by approximately 55% on average.

When the Pearson coefficient similarity metric is used, 
according to Eq. (1), the mean of each user’s ratings is sub-
tracted from the ratings of the corresponding user, and the dif-
ference is used in the similarity computation formula. At this 
point, two options are available:

1.	 The mean of real user ratings is used; under this option, 
the optimization discussed above can be directly used;
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Fig. 11   Coverage increase for the different datasets, under the PCC 
user similarity metric

It is worth noting here that the steps (a) and (b) above are 
typically performed in an offline fashion [31], thus execution 
time is not critical. The online part of the algorithm, which is 
effectively limited to the rating prediction formulation phase, 
based on the VR-enhanced user–item rating matrix, taking into 
account the similarities computed in step (b), is only slightly 
penalized, by a factor ranging from 0.4 to 1.3%, depending 
on the number of virtual ratings computed by step (a) above. 
Using a commodity laptop with the specifications listed in the 
“Experimental evaluation” section, a rating prediction is formu-
lated in less than 10 ms, while additionally the rating prediction 
computation task is directly parallelizable, with concurrent rat-
ing prediction computation requests being assigned to different 
execution cores.

The similarity metric employed affects the re-computation of 
the similarities (step b, above) as follows: consider users U and 
V, where I(U) and I(V) denote the items that each user has rated, 
and IV(U) and IV(V) denote the items for which virtual ratings 
have been computed for each of the users, using the algorithm 
presented in Listing 1. Then, the items commonly rated by the 
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2.	 The mean of both real and virtual ratings is used; under 
this option, the optimization presented above is not 
applicable.

According to experiments conducted, option (2) above 
exhibits slightly superior performance compared to option 
(1), with the MAE improvement of option (2) being 0.2% 
larger than the MAE improvement of option (1) on aver-
age, in absolute figures. Therefore, a trade-off between 
performance and accuracy improvement exists; consider-
ing, however, that similarity computation is performed in 
an offline fashion, option (2) is preferable.

Comparison with Previous Work

After having determined the optimal parameter values 
for the operation of the CFVR algorithm (i.e. the opti-
mal radius of the near neighbourhood to explored for the 
computation of VRs, as well as the virtual rating weight 
computation function that delivers the highest prediction 
error reduction), we elaborate on the algorithm perfor-
mance evaluation results, considering rating prediction 
coverage and accuracy, using the eight datasets summa-
rized in Table 2. For both aspects, the plain CF algorithm 
is used as a performance baseline. Besides reporting on 
the improvements coverage and accuracy attained by the 
CFVR algorithm introduced in this paper, we compara-
tively assess its performance against the performance of 
the CFVNN algorithm introduced in [3] and the CFDR algo-
rithm introduced in [4]. Both CFVNN and CFDR (a) are 
state-of-the-art algorithms focusing on addressing data 
sparsity issues and increasing rating prediction coverage, 
(b) accomplish substantial improvements regarding cover-
age, while improving—to a small extent—rating predic-
tion accuracy (c) do not require any additional data (e.g. 

such as textual user reviews or user-to-user relationships 
retrieved from social networks).

Figure 11 illustrates the results obtained regarding the pre-
diction coverage increase, when user-to-user similarity is quan-
tified using the PCC metric. We can notice that the CFVR algo-
rithm, presented in this paper, achieves an average prediction 
coverage increase equal to 36%, exceeding the performance of 
the CFVNN algorithm [3] by 7.8% and that of the CFDR algo-
rithm by 1.36%; the relative improvement against the CFVNN 
algorithm, computed as Improvement(CFVR)−Improvement(CFVNN)

Improvement(CFVNN)
 , is 

equal to 27.7%, while the relative improvement against the 
CFDR algorithm is equal to 3.9%.

Similarly, Fig. 12 presents the respective results obtained 
regarding prediction coverage increase, when user-to-user simi-
larity is quantified using the CS metric. In this case, we can 
notice that the CFVR algorithm, presented in this paper, achieves 
an average prediction coverage increase equal to 22.2%, exceed-
ing the performance of the CFVNN algorithm presented in [3] 
by 2.3% and the performance of the CFDR algorithm [4] by 
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Fig. 12   Coverage increase for the different datasets, under the CS 
user similarity metric
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0.32% (relative improvements are equal to 11.6% and 1.47%, 
correspondingly).

To validate the significance of the coverage increase results, 
we conducted a statistical significance testing, across all data-
sets, between the CFVR algorithm, presented in this paper, the 
CFVNN algorithm and the CFDR. The results of this experiment 
indicate that the proposed algorithm is shown to be statistically 
significant with a confidence interval of 95% under both simi-
larity metrics. In more detail:

•	 Under the PCC similar i ty metr ic,  p(CFVR, 
CFVNN) = 0.008 and p(CFVR, CFDR) = 0.014; after apply-
ing the Holm–Šídák post hoc test for p value correction 
for multiple tests, the adjusted p values are both equal 
to 0.016 and the corrected alpha for the Holm–Šídák 
method is equal to 0.0253; hence, a statistical signifi-
cance regarding the observed differences in the perfor-
mance of the CFVR algorithm against the performance of 
both the CFVNN and CFDR algorithms is established.

•	 Under the CS similarity metric, p(CFVR, CFVNN) = 0.009 
and p(CFVR, CFDR) = 0.017; after applying the Holm–
Šídák post hoc test for p value correction for multiple 
tests, the adjusted p values are both equal to 0.0179 and 
the corrected alpha for the Holm–Šídák method is equal 
to 0.0253; therefore, a statistical significance regarding 
the observed differences in the performance of the CFVR 
algorithm against the performance of both the CFVNN and 
CFDR algorithms is established.

Figure 13 illustrates the results obtained regarding the rat-
ing prediction MAE reduction, when user-to-user similarity is 
quantified using the PCC metric. We can notice that the average 
prediction MAE reduction achieved by the CFVR algorithm, 
presented in this paper, equals to 2.26%, surpassing the perfor-
mance of the CFVNN algorithm by 0.91% and the performance 
of the CFDR algorithm by 0.30% (relative improvements are 
equal to 67.4% and 15.2%, respectively).

Similarly, Fig. 14 illustrates the respective results obtained 
regarding the rating prediction MAE reduction, when user-
to-user similarity is quantified using the CS metric. We can 
notice that while the CFVNN and the CFDR algorithms achieve 
an average MAE reduction equal to 1.61% and 2.06%, respec-
tively, the CFVR algorithm, presented in this paper, achieves 
an average MAE reduction equal to 2.25% (i.e. 39.8% relative 
improvement against CFVNN and 9.2% relative improvement 
over CFDR; the respective improvements in absolute figures 
are equal to 0.64% and 0.29%).

Figure 15 illustrates the measurements obtained regarding the 
rating prediction RMSE reduction, when user-to-user similarity 
is quantified using the PCC metric. We can notice that while the 
CFVNN and CFDR algorithms achieve an average RMSE reduc-
tion equal to 1.99% and 2.61, the CFVR algorithm, presented in 
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Fig. 15   RMSE reduction for the different datasets, under the PCC 
user similarity metric
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Fig. 16   RMSE reduction for the different datasets, under the CS user 
similarity metric

Table 3   Statistical significance tests for accuracy

Simi-
larity 
measure

MAE RMSE

p(CFVR, 
CFVNN)

p(CFVR, CFDR) Corrected p values 
(Holm–Šídák)

Corrected alpha 
(Holm–Šídák)

p(CFVR, 
CFVNN)

p(CFVR, CFDR) Corrected p value 
(Holm–Šídák)

Corrected alpha 
(Holm–Šídák)

PCC 0.008 0.015 0.016 0.0253 0.007 0.013 0.014 0.0253
0.016 0.014

CS 0.005 0.012 0.001 0.0253 0.006 0.015 0.012 0.0253
0.012 0.015
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this paper, achieves an average RMSE reduction equal to 2.95% 
(i.e. to 47.5% relative improvement against CFVNN and 13.02% 
relative improvement over CFDR; the respective improvements 
in absolute figures are equal to 0.96% and 0.34%).

Finally, Fig. 16 illustrates the measurements obtained regard-
ing the rating prediction RMSE reduction, when user-to-user 
similarity is quantified using the CS metric. We can notice that 
while the CFVNN and CFDR algorithms achieve an average RMSE 
reduction equal to 1.35% and 1.91%, respectively, the CFVR algo-
rithm, presented in this paper, achieves an average RMSE reduc-
tion equal to 2.09% (i.e. to 54.8% relative improvement against 
CFVNN and 9.4% relative improvement over CFDR; the respective 
improvements in absolute figures are equal to 0.74% and 0.18%).

To establish the statistical significance of the MAE and 
RMSE accuracy improvement measurements, we conducted a 
statistical significance testing between the CFVR algorithm, pre-
sented in this paper and the CFVNN and CFDR algorithms, con-
sidering the results obtained for all datasets. The Holm–Šídák 
post hoc test was applied to cater for p value correction for 
multiple tests. The results of this experiment indicate that the 
CFVR algorithm improvements are statistically significant at a 
confidence level equal to 95% under both similarity metrics. 
Table 3 illustrates the results of the statistical tests for the MAE 
and RMSE metrics, under both similarity measures.

Besides the comparison of the proposed algorithm against 
the algorithms proposed in [3, 4], we also compare the pre-
sented algorithm with the one presented in [36], which targets 
noisy environment and has been found to be more efficient than 
other algorithms of the same category [36–39]. According to 
the results presented in [36], the algorithm proposed therein 
achieves an average improvement in MAE equal to 1.12% 
(ranging from 0.42 to 1.83%) against the plain CF algorithm, 
while it does not have any effect on the recommendation cov-
erage. The algorithm proposed in this paper achieves an aver-
age MAE reduction equal to 2.26% combined with a coverage 
increase of 36% under the PCC metric, while the respective 
improvements under the CS metric are equal to 2.25% and 
22.2%. [39] also reports on an algorithm that improves the 
MAE, without, however, affecting coverage. Moreover, these 
improvements are reported for users having 20–100 near neigh-
bours, a condition that is not met in sparse datasets.

Conclusions and Future Work

In this paper, we presented the CFVR algorithm, which is a 
novel CF algorithm for improving prediction coverage in 
sparse datasets.

The novelty behind the proposed algorithm is the introduc-
tion of the virtual ratings, which are formulated for each NN of 
a user U who cannot contribute to the prediction formulated for 
U with a real rating that effectively reduces the user–item rat-
ing matrix sparsity, thus alleviating the “grey sheep” problem, 

all sparse CF datasets suffer from. The procedure for virtual 
rating creation considers the direct neighbourhood of the user, 
as well as his/her indirect neighbourhood, while each VR is 
assigned a weight, based on the aspects of the neighbourhood 
that has contributed to its formulation and reflects the degree 
of confidence to the value of the VR. The incorporation of the 
weight has been shown to increase rating prediction accuracy.

The presented algorithm has been experimentally verified 
using eight datasets and the evaluation results have shown that 
the introduction of VRs may increase prediction coverage by 
a factor ranging from 7.6 to 80.5% under the PCC similarity 
metric for sparse datasets (the actual improvement is dataset-
dependent) when the VRs are computed considering the full 
transitive closure of the NN relationship among users. However, 
experiments have shown that limiting the near neighbourhood 
range to a value of 2 is sufficient to reach prediction cover-
age of at least equal to 99.91% of the maximum (i.e. the one 
obtained when considering the full transitive closure of the NN 
relationship), allowing thus to harvest significant gains in com-
putational efficiency with a negligible effect on the prediction 
coverage. In parallel, the CFVR algorithm achieves considerable 
improvements in terms of rating prediction accuracy, decreas-
ing the MAE by 2.3% and the RMSE by 2.5% on average.

We have also comparatively evaluated performance the 
CFVR algorithm against the CFVNN [3] and the CFDR algorithm 
[4] in terms of performance; CFVNN and CFDR are state-of-
the-art algorithms, aiming to increase prediction coverage in 
sparse datasets, utilizing solely the user–item ratings database. 
The CFVR algorithm, presented in this paper, has been shown 
to surpass the performance of the CFVNN and the CFDR algo-
rithms, both in terms of rating prediction coverage increase and 
rating prediction accuracy improvement, for both the similarity 
metrics tested.

The proposed algorithm exhibits the practical advantages 
that (a) achieves to increase both coverage and accuracy, and 
(b) operates only using the user–item rating matrix, without 
requiring any additional data and thus being applicable in all 
cases where this elementary information is available. An identi-
fied limitation of this work is that in very sparse datasets cov-
erage increments may be obtained, however, in some cases, 
the increased coverage may not exceed 80%. In these cases, 
the user–item rating matrix data should be supplemented with 
additional data that can be exploited, such as user-to-user rela-
tionships, textual reviews and so forth.

Regarding our future work, we plan to explore alternative 
algorithms for increasing rating prediction coverage and/or 
reducing rating prediction error in sparse CF datasets. Further-
more, we plan to examine these algorithms using more simi-
larity metrics, such as the Spearman coefficient, the Euclidian 
distance and the Manhattan distance [46]. Finally, we will 
examine the extension of the CFVR algorithm to accommodate 
and exploit additional data sources, such as social network-
sourced information, textual reviews or IoT data, in order to 
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further improve rating prediction coverage and rating predic-
tion accuracy. In this context, existing algorithms in these areas 
[47–54] will be studied and adapted accordingly.
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